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Abstract: 
 
The present study seeks to analyze the feasibility of detecting water and steam leaks in black liquor 
recovery boilers, since such leaks represent both safety hazards and economic losses. Water leaks in 
the bottom wall, in particular, involve a risk of explosion as water mixes with the sodium metal of 
the smelt. This justifies the heavy emphasis in this report on bottom wall water leaks, while 
addressing the detection of steam leaks more expediently. 
 
The hypothesis presented in this work is that the attenuation of the structure-borne sound from a 
water leak, through the bottom wall, to the sensor, may be so strong at the high frequencies often 
monitored, that it is undetectable above the background noise level. Thus, the present work provides 
a detailed study of that attenuation, both analytical and experimental. 
 
The steam leak problem, and particularly the size of leaks that are detectable, is addressed by using 
scaling laws from the theory of flow-induced sound, and inferring scaling factors from previously 
published works on this topic. 
 
 
 
 



 

1 Introduction 

The present study considers the feasibility of detecting water and steam leaks in black liquor 
recovery boilers, using vibroacoustic monitoring. Vibroacoustic monitoring may take the form of 
either the continuous measurement of structure-borne sound (primarily in the bottom wall, to detect 
water leaks) or of airborne sound (primarily to detect steam leaks). As such, the study is not 
primarily concerned with the specific instrumentation, transducers or signal processing required of a 
monitoring system. Rather, it is concerned with the physical acoustics problem of how the sound 
and vibration fields generated by a leak propagate in the structure or in the gases inside the furnace. 
That propagation, and in particular the resulting strength of the leak-induced vibroacoustic field at 
the monitoring positions, in relation to the background noise level induced by operation, dictates 
whether or not detection is feasible at all, whatever the details of the monitoring system. 
 
Steam and water leaks are of interest for both safety and economic reasons.  
 
The main safety consideration is the risk of an explosion, should water enter the smelt, which 
mainly consists of sodium metal. That risk is particularly great when the leak involves water, rather 
than steam, and even more so if it is in the bottom wall. Thus, the topic of water leaks in the bottom 
wall is given the greatest share of the attention in this work.  
 
Current practice, in monitoring for water leaks in the bottom wall, is to use acoustic emission 
sensors, which are most sensitive at very high frequencies (say, 150 kHz). Reportedly, however, 
that methodology is not completely satisfactory. The hypothesis presented in this work is that the 
signal-to-noise ratio at such frequencies may often be inadequate to detect a leak, especially due to 
the strong attenuation of the structure-borne sound from the leak as it crosses the periodic fin-tube 
structure of the boiler’s bottom wall. The attenuation is a function of frequency, depending on the 
periodicity of the wall, and the damping due to the smelt and other mechanisms. Typically, one 
expects a large attenuation at high frequencies, which makes the risk of a poor signal-to-noise ratio 
especially acute, given that the monitored frequencies are very high. The present work provides a 
detailed study of that attenuation, both analytical and experimental, which is found in section 2 
below, and which bears out the hypothesis that the attenuation is high at the monitored frequencies. 
 
Steam leak detection by microphones is also treated, in section 3 below. However, in keeping with 
the intent to emphasize water leaks, the approach to steam leaks has been to merely supply some 
new interpretation to already existing results from the literature, rather than undertake extensive 
new theoretical or experimental work. Scaling laws from the theory of flow-induced sound are used, 
and the needed scaling factors are inferred from previously published results. A preliminary 
conclusion is that 1.4 mm leaks are about the lower limit of what can be detected inside the furnace, 
but that conclusion is based on very imprecisely reported input data. 



 

2 Water leaks in the bottom wall 

The problem is illustrated in figure 1.  
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Figure 1. Vibroacoustic sources and paths in the recovery boiler. All sources, except for a water leak (or cracking 
leading to such a leak) are regarded as background noise. The inset shows the structure of the bottom wall, in 
which tube and plate (“fin”) elements alternate. 

Vibrations are induced in the bottom wall of the boiler from combustion of black liquor droplets, 
smelt dissolution, and other sources which are present in normal operation. These vibrations are 
referred to as “background noise”, since they are undesirable disturbances that are registered by the 
transducers monitoring for water leaks. 
 
Should metal cracking or a water leak occur, it might also generate vibrations at a specific point 
(illustrated in the inset of the figure). These vibrations then spread throughout the bottom wall, 
eventually reaching one of the transducers of the measurement system. 
 
The hypothesis guiding the present work is that the signal-to-noise ratio may be too weak at the 
sensor; i.e., leakage-induced vibrations may be too weak, as compared to operation-induced 
vibrations. That ratio depends on the following factors: 
 
 • attenuation (decay of vibrations with distance in the wall) 

• background vibration levels 
• vibratory power input of the leakage mechanism into the structure 
 

The first of those factors, attenuation, is investigated in this report by a computational model 
(section 2.1 below) and by field measurements in actual recovery boilers (section 2.2 below). The 
second factor, background noise, is also investigated in the field measurements (section 2.2 below), 



 

but its computational modeling has not been possible within the scope of this project (although 
recommendations for such work are presented). The third factor, power input, is not investigated 
here, but recommended for future investigation. Because the attenuation is expected to be greatest 
in the direction across the pipes, the following work concentrates on the attenuation of plane waves 
in that direction. 

2.1 Theoretical study 
The structure of the bottom wall has the character of a periodic structure, of the form … – fin – tube 
– fin – tube – fin – …etc., as illustrated in figure 2. 
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Figure 2. Periodic structure of the bottom wall, and its periodically repeating unit: half fin – tube – half fin. 

Although the structure does, of course, have boundaries, it may be well-approximated as infinite 
periodic, since its dimensions are very large with respect to the relevant wavelengths. The greater 
the decay and the higher the frequency, the better that approximation will be (for greater decay, 
reflections from the boundaries are much weaker than the direct field from a water leak; for higher 
frequencies, the wavelength becomes ever shorter with respect to the large dimensions of the gross 
structure). In that respect, it is similar to a railway track or a ship’s hull with its regularly repeating 
lateral stiffeners, for example. 
 
Infinite periodic structures tend to show marked pass-band and stop-band behavior, i.e., regions of 
attenuation minima and maxima, respectively. Moreover, they lend themselves to relatively 
efficient analysis, since the dynamics of the gross structure may be constructed from the dynamics 
of the periodically repeating unit, and the computational effort may therefore be focused on the 
latter. 

2.1.1 Basic formulation 
Material damping in the structure is accounted for by allowing complex Young’s moduli 
 

)i1(, fnomff EE η+=  and )i1(, tnomtt EE η+= ,           ( 2.1 ) 
 
for the fin and tube materials, where Ef,nom and Et,nom are the respective real-valued Young’s moduli 
(as would be found in a handbook), and ηf and ηt are the loss factors. All other forms of damping in 
the structure (such as friction at welds, etc.) are incorporated into these loss factors as well. 
 
As a first approximation (which is then modified in the following sections), both the fin and the 
tube are modeled as thin plates. Thus, rotational inertia and shear deformation are ignored in the 
treatment of bending, and the curvature of the tube is ignored. Both of these approximations are 



 

unsatisfactory in the frequency range of interest, but will facilitate the initial development. Thus, the 
bending stiffnesses are 
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of the fin and tube, respectively, where h the thickness, E the Young’s modulus, andν the Poisson’s 
ratio, each subscripted with either f for the fin or t for the tube. The bending wave numbers are 
 

4
2ω

ρ

f

ff
Bf D

h
k = , and 4

2ωρ

t

tt
Bt D

hk = ,           ( 2.4 ) 

 
of the fin and tube, respectively, where ρ is the density, ω = 2πf is the circular frequency in rad/s 
and f the frequency in Hz.  The quasi-longitudinal wave numbers are 
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of the fin and tube, respectively, which is the appropriate form for a plate [Cremer et.al., 1988]. 
 
The displacements in fin and the tube of the repeating unit are first identified, using the coordinate 
systems identified in figure 3.  
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Figure 3. Coordinate systems for tube and fin, respectively. Note that s′ = s - πR, and x′ = x – L. 

The horizontal and vertical displacements are indicated by u and v, respectively. Subscripts are used 
in the pattern pq. The first subscript indicates whether the displacement refers to the fin (p = “f”) or 
to the tube (p = “t”). The second subscript, if present, indicates whether the displacement refers to 
the left side of the repeating unit (q = “l ”), or to the right side (q = “r”).  
 
For the tube,  
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where s′ = s - πR. 
 
For the fin to the right of the tube, 
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where x′ = x – L, and for the fin to the left of the tube,  
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The Floqet condition has been used here to account for the repeating unit being part of an infinite 
periodic structure; it states that the vibrations of a repeating unit are the same as those of the unit to 
its left, modified only by the factor e-g, where the “propagation constant” g is complex. The real part 
of g represents attenuation per unit (decay occurring as one moves to the right if a ≡ Re(g) is 
positive), and the imaginary part represents a phase shift.  
 
Attention is now focused on the two junctions of the fin to the tube that occur in each of the 
repeating units. Here the various displacement terms of the tube and the fin are interpreted as waves 
and nearfields, and the fin-tube junctions as representing local transmission-reflection problems for 
those wave fields and near fields. This is illustrated in figure 4. 
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Figure 4. Waves and nearfields at the left and right tube-fin junctions of a repeating unit. 

Conditions of kinematical continuity within the tube (across a junction), and between the tube and 
the fin (“connectedness”), as well as equilibrium, must apply at each of the two junctions. Exactly 
18 such conditions can be identified, corresponding to the 18 independent wave and nearfield 
amplitudes. These are given in the following, and evidently constitute an eigenvalue problem for the 
propagation constant g: 
 
Connectedness of vertical displacement at right junction (fin-tube): 
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Continuity of vertical displacement at right junction (within tube):     
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Connectedness of vertical displacement at left junction (fin-tube): 
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Continuity of vertical displacement at left junction (within tube): 
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Connectedness of horizontal displacement at right junction (fin-tube): 
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Continuity of horizontal displacement at right junction (within tube): 
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Connectedness of horizontal displacement at left junction (fin-tube): 
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Continuity of horizontal displacement at left junction (within tube): 
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Connectedness of angular displacement at right junction (fin-tube): 
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Continuity of angular displacement at right junction (within tube): 
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Connectedness of angular displacement at left junction (fin-tube): 
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Continuity of angular displacement at left junction (within tube): 
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Equilibrium of vertical forces at right junction: 
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Equilibrium of vertical forces at left junction: 
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Equilibrium of horizontal forces at right junction: 

( )
( )

( )ul
Rk

ul
Rk

ururt

tl
Rk

tl
Rk

trtrt

fl
gLk

LffrLfff

NkBkNkBkD

NkBkNkBkD

LkLkhE

Bt

Bt

Bt

BtBtBt

Bt

Bt

Bt

BtBtBt

Lf

ππ

ππ

−−

−−

−−

+−−++

−++−−=

+

eeii

eeii

eeii-

3i333

3i333

i

    ( 2.14 o) 

 
Equilibrium of horizontal forces at left junction: 
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Equilibrium of rotational moments at right junction: 
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Equilibrium of rotational moments at left junction: 
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Define a vector u containing all of the unknown wave and nearfield amplitudes: 
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Then define the matrix A, which appears in the form of a table, below, with empty cells 
representing zeroes. 
 
Table 1. Matrix A defined. 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
 
 1 1 1       γBfe-g γNfe-g γLt      

   1   -1       γLt   -γLt   

 γBfeg γNfeg -γLt       1 1 -1      

   γLt   -γLt      1   -1   

1    -1 -1    γLfe-g    -γBt -γNt    

    1 1  -1 -1     γBt γNt  -γBt -γNt 

γLfeg     γBt γNt    1    1 1    

    γBt γNt  -γBt -γNt     1 1  -1 -1 
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 -ikBfγBfeg -kBfγNfeg  -ikBtγBt -kBtγNt     ikBf kBf  ikBt kBt    

    ikBtγBt kBtγNt  ikBtγBt kBtγNt     -ikBt -kBt  -ikBt -kBt 

 ik3
BfDf k3

BfDf -ikLtEtht   ikLtEtht      ikLtEthtγLt   -ikLtEthtγLt   

 g
BffBfDk ei 3 γ  g

NffBfDk e- 3 γ  ikLtEthtγLt   ikLtEthtγLt    -ik3
BfDf k3

BfDf -ikLtEtht   -ikLtEtht   

-ikLfEfhf     -ik3
BtDt k3

BtDt  -ik3
BtDt k3

BtDt g
LfffLf hEk −ei γ     ik3

BtDtγBt -k3
BtDtγNt  ik3

BtDtγBt -k3
BtDtγNt 

g
LfffLf hEk ei- γ     -ik3

BtDtγBt k3
BtDtγNt  -ik3

BtDtγBt k3
BtDtγNt ikLfEfhf    ik3

BtDt -k3
BtDt  ik3

BtDt -k3
BtDt 

 -k2
BfDf k2

BfDf  k2
BtDt -k2

BtDt  -k2
BtDt k2

BtDt     k2
BtDtγBt -k2

BtDtγNt  -k2
BtDtγBt  k2

BtDtγNt 
 g

BffBfDk e- 2 γ  g
NffBfDk e2 γ

 
 k2

BtDtγBt -k2
BtDtγNt  -k2

BtDtγBt k2
BtDtγNt  -k2

BfDf k2
BfDf  k2

BtDt -k2
BtDt  -k2

BtDt k2
BtDt 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
  

 
Solving the eigenvalue problem Au=0 gives the propagation constants g, and the attenuation 
constants are then a = Re(g). The decay may also be expressed in decibels per unit as  
 

d = 20 log e-a dB,             ( 2.16 ) 
 
or in decibels per meter as  
 

d = 20 log e-a/(L+2R) dB,            ( 2.17 ) 



 

 
where L is the length of a fin and R radius of a tube (i.e., L + 2R is the length of a repeating unit). 

2.1.2 Thick plate corrections for the fin 
The thin plate theory is not satisfactory at high frequencies, including most of the range of interest 
in the present application (say, above about 60 kHz). An approximate thick plate correction, but 
keeping the same formulation as above, is obtained by replacing the thin-plate bending wave 
numbers by thick-plate (Mindlin) bending wave numbers, and using an effective bending stiffness, 
reduced from that of the thin-plate theory. In fact, the approach used is not exactly the same as the 
Mindlin plate theory (the plate-theory analogous to Timoshenko beam theory), but an 
approximation of it, for two reasons.  
 
The first reason is that the Mindlin plate theory has two bending wave numbers: a real one k1, 
analogous to the bending wave number kB of the thin-plate theory, although k1 > kB; and, another 
one k2, which is imaginary at low frequencies, and real above some cut-on frequency. The second 
wave number, below the cut-on frequency, corresponds to the nearfields of the thin-plate theory 
(i.e., it gives xk2ie± terms corresponding to the xkBme terms of the thin-plate theory, since k2 is 
imaginary). Although 12 kk <  below the cut-on frequency, 12 kk ≈ is a good approximation below 
about half of the cut-on frequency. Thus, in simply replacing kB by k1 in the matrix of the preceding 
section, the nearfield terms are replaced by xkxk 21 iee m≈± .  
 
The second reason is that the equations of continuity and equilibrium do not reflect the additional 
degrees-of-freedom introduced by allowing shear deformation as part of bending. The 
approximation made is to use the same set of equations, but to incorporate shear deformation by 
means of a reduced effective bending stiffness. 
 
Abandoning the notation k1 used for explanation above, the thick-plate bending wave number is 
given the same notation as the thin-plate wave numbers, but with an asterick “ * ”; it is: 
 

f

f

ff

ff

f

ff

f
f

ff

f
f

f

ff

fBf

k

G
r

h
D

hG
D

r
hG

D
r

D
h

kk

2

2
2

4
2

2422

1*

i

4
2

−≈

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

==

ω
τ

ρ
ω

ρτ
ω

τ
ω

ρ
,      ( 2.18 ) 

where 12ff hr =  is the radius of gyration of the plate about its neutral axis, and 
)1(2 fff EG ν+=  is the shear modulus. 

 
The effective bending stiffness is then 
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2.1.3 Curvature (shell) and thickness corrections for the tube 
The corrections to account for tube curvature, and shear and rotational inertia (“thickness”, in the 
sense of needing a “thick shell” model), are made using the same strategy as for the thick-plate 
corrections for the fin. Rather than change the matrix A which was devised in 2.1.1 for thin plate 
models, it is more expedient to make use of effective wavenumbers, effective bending stiffness, and 
effective longitudinal stiffnesses. 
 
The corrected wave numbers are found from the method of [Graff, 1970] for curved beams (and not 
repeated here), but replacing E for a beam (in Graff) by E/ (1 - ν) to make it applicable to a plate, 
and using a radius of gyration 12tt hr =  and “Timoshenko constant” τ = .83. This approach is 
then applicable to plane waves propagating circumferentially on a thick, infinitely-long cylindrical 
shell. Note that both the “bending” and the “longitudinal” wave numbers are corrected in this case 
(their respective identifications as “bending” and “longitudinal” are only approximate, since each 
propagating mode now couples both in-plane and out-of-plane motions). These wave numbers are 
henceforth identified as kBt* and kLt* , and the adjusted bending stiffness and “effective” Young’s 
modulus are 
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and 
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respectively. 

2.1.4 Fluid interaction corrections: smelt and water 
The method developed thusfar is adequate for the case of the boiler wall with unfilled-pipes and 
without a smelt layer having developed above it from boiler operation. Since it is the operating 
boiler that is of interest in continuous monitoring, however, the fluid-structure interactions 
involving the smelt and the water must also be included. 
 
The smelt is difficult to include. Firstly, its properties (e.g., speed of sound, density, elastic 
properties, etc.) are little known. Secondly, it is not a fluid throughout the smelt layer; it is solidified 
near the wall and liquefied further away. Thirdly, as opposed to the situation in classical fluid-
structure interaction problems, the smelt layer is not semi-infinite, but has a finite depth. 
 
The water, although much better understood from the perspective of its properties, is nevertheless 
also problematic in that it is completely enclosed by the pipe, and represents a small volume (per 
unit length of a single pipe), so that its geometric distribution differs even more than that of the 
smelt from that of classical fluid-structure interaction problems. 
 
All of the reservations stated above notwithstanding, the fluid interactions are nevertheless treated 
here as if they were classical (semi-infinite fluids). There are several reasons to believe that such a 
treatment is an adequate approximation, despite the reservations made. Firstly, the smelt properties 



 

being so imperfectly known, additional approximation is not a serious drawback − the uncertainty 
from smelt properties will negate any possible benefit from a more complicated fluid model. 
Secondly, the solidified smelt layer is at a high temperature, and probably many orders of 
magnitude less stiff than the boiler wall material; pressure waves will be favorably radiated into it 
by the wall, while shear waves will not (because of the large impedance difference) − thus, it will 
effectively act as a fluid. Thirdly, and finally, the finiteness of the fluids becomes unimportant when 
the wavelength is small compared to the dimensions of the fluid volumes; that is the case above 
about 30 kHz (at which the ratio tube diameter-to-water wavelength is 1.27). Thus, the model can 
cover exactly that part of the frequency range of interest which the finite difference (2-d.o.f.) model, 
to be presented in section 2.1.5, will be inadequate for. Evidently, the approximation improves more 
and more as the frequency increases. 
 
Physically, the fluids act as “added masses” (effective increases of the fin or tube density) below the 
so-called “coincidence frequency”, and as “radiation dampers” (effective increase of the loss factor 
of the fin or tube material) above that frequency. The coincidence frequency is distinct for each 
combination of fluid medium and structural element (solid medium); thus, there are three relevant 
coincidence frequencies in this problem: water-tube, smelt-tube, and smelt-fin (the combination 
water-fin obviously lacks any relevance, since the fin is never in contact with water). Let us call 
these fcwt, fcst, and fcsf respectively, and note that they occur when waterwaterBt ckk ω==* , 

smeltsmeltBt ckk ω==* , and smeltsmeltBf ckk ω==*  respectively, where csmelt is the speed of sound in 
the smelt and cwater the speed of sound in water. 
 
For the fin, which only interacts with the smelt, the corrected wave number kBf** is calculated: 

1. On f > fcsf , i.e., above coincidence, by the method of sections 2.1.1-2.1.2, but replacing the loss 
factor ηf by  
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[Cremer et.al., 1988], which accounts for the radiation damping effect. 
 

2. On f < fcsf , i.e., below coincidence, as  
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[Junger – Feit, 1993], which accounts for the added mass effect. 

 
For the tube, the assumption is made that fcst < fcwt; this will prove to be true for the particular 
properties assumed for the smelt in this work (see section 2.1.6). Then, the corrected wave number 
kBt** is calculated: 
 

1. On f > fcwt > fcst, i.e., above both coincidences, by the method of sections 2.1.1-2.1.3, but 
replacing the loss factor ηt by  
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[Cremer et.al., 1988]. 
 

2. On fcst < f < fcwt,  , i.e., below water coincidence but above smelt coincidence, by the method of 
sections 2.1.1-2.1.3, but replacing the loss factor ηt by  
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[Cremer et.al., 1988], which accounts for radiation into the smelt, and then by multiplying the 
resulting wave number by the factor 
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[Junger – Feit, 1993], which accounts for the added mass of the water. 

 
3. On f  < fcst < fcwt, i.e., below both coincidences, as 
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The entire method then proceeds as in section 2.1.1, except that the uncorrected parameters: 
 
kBf, kLf, kBt, kLt, Df, Ef, ηf, Dt, Et, and ηf ; 
 
are replaced by the doubly-corrected ones (i.e., corrected for both thickness & curvature [1st *] and 
for fluid interactions [2nd *]): 
 
 kBf**, kLf**, kBt**, kLt**, Df**, Ef**, ηf**, Dt** , Et** and ηf**,  
 
respectively. Considering the valid range of the first approximation mentioned in section 2.1.2 (that 

12 kk ≈ , reasonable up to the half cut-on frequency), and which is also applicable to the 
corrections of section 2.1.3, the entire method should be acceptable to about 200 kHz. 

2.1.5 Two-d.o.f. finite difference model 
At low frequencies, the 18-d.o.f. wave model described in sections 2.1.1 – 2.1.4 will not  be valid, 
because the approximation that the small contained water volume can be regarded as semi-infinite, 
from the perspective of the tube, is not tenable. The bending wavelength, in that region, is of the 
order of, or larger than, the diameter of the enclosed water volume. Thus, another approach is 
needed. In this work, the frequency range 0-20 kHz has therefore been studied using a time-domain 
finite difference method, in which the fin and tube are simple lumped elements. The fin acts as a 
lumped stiffness, compliant for vertical and rotational relative motions of its opposite boundaries, 



 

but rigid against horizontal motions (thus, only bending, not longitudinal, motions are now possible 
in the structure). The tube acts as a lumped inertial element. In vertical translations (horizontal ones 
are not allowed), the mass is that of the tube and the water, combined. In rotations, only the tube’s 
rotational inertia is included; shear stresses are not transmitted across the tube-water interface. All 
damping is ignored. 
 
The mass of the tube (including water) is  
 

waterttt RRhM ρπρπ 22 += .           ( 2.28 ) 
 
The rotational inertial of the tube (without water) is 
 

ttt hRJ ρπ 32= .            ( 2.29 ) 
 
The vertical translational stiffness of the fin is 
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The rotational stiffness of the fin is 
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where 
6

2Ldoffset = . 

The bottom wall structure is thus modeled as a series of N repeating units as shown in figure 5, 
where N is large. 

Kf
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etc. ... 

KfKf KfMt , Jt Mt , Jt Mt , Jt

doffset

Kf
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KfKf KfMt , Jt Mt , Jt Mt , Jt

doffset

 

Figure 5. Schematic model of the bottom wall as a series of lumped elements. The fin represents a lumped 
stiffness, and the tube a lumped inertial element (in which the water only takes part in the translational motion). 

 
Consider the tube of the  j-th repeating unit in the series, counted from the left. Its motion is 
characterized by a vertical displacement vj (positive upwards) and a rotation θj (positive 
counterclockwise). A free-body diagram of the tube is illustrated in figure 6, where the inertial 
forces are indicated by dashed arrows; dots indicate differentiation with respect to time. 



 

Kf (vj + θj doffset  / 2 - [vj+1 - θj+1 doffset  / 2])
Mt , Jt

Kf (vj - θj doffset  / 2 - [vj-1 + θj - 1 doffset  / 2])

Mt vj
..

Jt θj

..

Kf (vj + θj doffset  / 2 - [vj+1 - θj+1 doffset  / 2])
Mt , Jt

Kf (vj - θj doffset  / 2 - [vj-1 + θj - 1 doffset  / 2])

Mt vj
..

Jt θj

..

 
Figure 6. Free-body diagram of the tube of a single repeating unit. Inertial loads are given as dashed lines. 

 
Conditions of vertical and rotational dynamic equilibrium then imply that 
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and 
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Making the finite difference approximations of the time derivatives, 
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and 
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it is then possible to express each of the degrees-of-freedom at a “new” instant of time in terms of 
the d.o.f. at j-1, j, and j+1, at the two preceding instants “current” (∆t earlier) and “old” (2∆t 
earlier), as 
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where the “current” instant of time is implied when no subscript is used. 
 



 

The method then proceeds by specifying at rest initial conditions at all of the units, 
 

[ ]Njvv oldjjoldjj ,1,0,, ∈==== θθ .           ( 2.38 ) 
 
Next, the time is advanced by steps ∆t, so that t = m∆t, as m = 1, 2, 3 … , while forcing the first unit 
in the series to undergo a harmonic oscillation of unit rotational amplitude at a frequency f (or 
rotational frequency ω = 2πf) of interest,  
 

( )ftnew πθ 2sin,1 = ,            ( 2.39 ) 
 
and constraining all other degrees-of-freedom at the first and last (N-th) unit to be fixed 
 

0,,,1 === newNnewNnew vv θ .           ( 2.40 ) 
 
Evidently, using the equilibrium conditions expressed explicitly in terms of vj,new and θj,new, for j ∈ 
[2, N - 1], these d.o.f. can be solved in each step, knowing their values at all points in the preceding 
two time steps. That is possible for the entire time series, starting from the initial conditions, which 
supply two time instants. 
 
Tracking the vertical displacement vj at two units, j = Nref and j = Nresp, such that Nref  << Nresp<< N, 
these may be filtered over a long time interval for their respective amplitudes )(ˆ ω

refNv and )(ˆ ω
respNv  

at the excitation frequency ω. The attenuation per unit is then 
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The decay in decibels per unit is 
 

d = 20 log e-a dB,             ( 2.42 ) 
 
and in decibels per meter is  
 

d = 20 log e-a/(L+2R) dB.           ( 2.43 ) 
 
The procedure involved tonal filtering of vj at frequency ω , because of the presence of other 
frequency components due to the initial transient. The first “<<” condition above, Nref  << Nresp, 
ensures that the difference in amplitude is large enough to accurately find low attenuation levels, 
while the second “<<” condition, Nresp<< N, seeks to minimize the influence of reflections from the 
end of the finite series, since it gives the reflections an opportunity to attenuate before reaching 
Nresp. 

2.1.6 Results 
Input properties used to study the boiler are provided in table 2, below. The tube and fin materials 
have handbook values for steel. The loss factors, however, are selected to be .01 to account for 
losses at welds; [Cremer et.al., 1988] suggests that value for composite structures. The water also 
uses handbook values. The smelt density is estimated from [Kawaji et.al.] and [Adams], and the 



 

speed of sound is a guess, based on the fact that in most fluids (including heavy metal fluids such as 
mercury) it falls in the 1200 – 1500 m/s range, tending towards the upper half of that range. 
 
Table 2. Input parameters for the 18-dof wave theoretical model. 

        Material 
Fin 
 Young’s modulus Ef,nom 2.1 × 1011 N/m2 

Poisson’s ratio νf 0.3 
Density ρf 7800 kg/m3 

Loss factor ηf .01  
Tube 
Young’s modulus Et,nom 2.1 × 1011 N/m2 
Poisson’s ratio νt 0.3 
Density ρt 7800 kg/m3 

Loss factor ηt .01 
Smelt 
Speed of sound csmelt 1400 m/s 
Density ρsmelt 2000 kg/m3 

Water 
Speed of sound cwater 1500 m/s 
Density ρwater 1000 kg/m3 

         Geometric 
Fin thickness hf .004 m 
Fin length L .0127 m 
Tube thickness ht .00185 m 
Tube radius R .03175 m 

 
The finite difference model uses the same input parameters, as applicable. Moreover, the reference 
position, response position, and finite track length are, respectively, 
 
Nref = 2, Nresp = 40, and N = 100. 
 
Results, using the two models discussed above, are presented in figure 7. Since the finite difference 
model is suitable at low frequencies, and the wave model at high frequencies, the two results 
together nearly cover the entire range of interest 0 – 200 kHz.  
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Figure 7. Predicted attenuation across the pipes of the bottom wall. Results at low frequencies are predicted 
using the 2-d.o.f. finite difference model (black line, hollow triangles), and at high frequencies using the 18-d.o.f. 
wave theoretical model (blue line, solid squares). The light dashed line is an interpolation. 

Evidently, there is a low frequency pass-band, up to about 10 kHz,  on which the attenuation is very 
close to zero. The fact that the decay results show a considerable amount of scatter there is a 
consequence of resonant effects in the finite difference model, since that model is finite. Since the 
attenuation is very low at those frequencies, nothing hinders the contribution from the end-
reflections from interfering with the direct contribution from the source; thus, resonances develop. 
At some frequencies, the response point is at or near a resonant node, and a slight positive decay 
occurs; at other frequencies, it is at or near an antinode, and a slight negative decay (i.e., 
amplification) occurs. However, the interpretation is that there is almost no attenuation at those 
frequencies. Above about 4 kHz, there is a steep rise in the attenuation, indicating the beginning of 
a stop band. Were it continued above 20 kHz, the 2-d.o.f. finite difference would predict that stop 
band to extend to infinity along the frequency axis, a consequence of accounting for only two low 
modes (vertical and rotational oscillations of the tube against the fin stiffnesses).  
 
The same stop band is also seen at 30 kHz in the wave model. The rest of the spectrum is 
dominantly a stop band, with decay in the range 1 – 2 dB per unit, but with narrow passbands 
occurring at 40 kHz, about 130 - 140 kHz, and about 160 kHz. This suggests that leakage 
monitoring could be concentrated on those frequency bands, since the leak-induced noise is least 
attenuated there.  
 
The location of the minima are likely explainable by resonances within the repeating unit, and of 
the maxima by anti-resonances and by coincidence frequencies (at which there is a narrow peak in 
the radiation damping effect). The coincidence frequencies are at 57 kHz (smelt-fin), 130 kHz 
(smelt-tube), and 150 kHz (water-tube); there are, in fact, attenuation maxima at the first and third 
of these. 
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Figure 8. Effect of the smelt on the predicted attenuation across the pipes. 

 
Figure 8 presents a comparison of the decay in the operating boiler (with smelt) to the same boiler 
not yet operated (without smelt). Notably, maxima and minima are slightly shifted because of the 
higher added mass of the smelt below 130 kHz. 

2.2 Experimental verification 

2.2.1 Measurement arrangements 
Measurements were performed at Skoghall, Sweden, at 4.-5.5.2005 by Järvinen & Hildebrand.  
Measurements were focused to the bottom wall of the recovery boiler; see the figure below. The 
used AE-sensors were broadband ones, Fuji 1045S, and the data acquisition was performed by 
Wavebook 512 at 500 kHz sampling rates. 
 

   
Figure 9. Measurements were performed at the bottom wall of the recovery boiler (left). Zoomed view at right. 



 

Measurement direction was chosen as perpendicular to the pipe direction. That is, because the 
sound propagation in that direction clearly is more difficult and thus gets more decay. The 
excitation was supplied to the reference pipe. Excitation was generated by Nielson lead break test, 
sandpaper, breaking multiple leads simultaneously and a tiny metal-to-metal impact. Each of those 
excitation sources has own advantages depending on the frequency range and/or the distance of 
reference and response. That is taken into account in data-analysis by choosing the best available 
measurement for each of the spectral lines. 
 

Response pipes

Distance: 20 pipes = = 152 cm

Distance: 10 pipes = = 76 cm

Distance: 1 pipe = = 7,6 cm

Reference pipe
 

 
Figure 10. Principle of the measurement arrangement. 

2.2.2 Noise consideration 
Because of the partially weak response levels, the analysis was firstly focused to the determination 
of noise levels of the measurement arrangement. The figure below presents the noise level of the 
reference channel 1 (blue points). Threshold values of the noise levels to the each of the channels 
were determined from theirs measured noise data by means of moving average and suitable 
coefficient; this is drawn as solid red line. This level will be a guideline in later data-analysis. Noise 
is assumpted to be as random and may freely vary below the defined threshold values. 

 
Figure 11. Determination of the threshold value of the noise level by means of moving average. 

2.2.3 Optimization 
In order to optimize the signal to noise ratios (STN) of measurements, ∆ 1, ∆ 2 and ∆3 were 
determined for each of the measurements to describe the STN ratios of references, responses and 
theirs noises. The figure below represents the choice of those deltas; 
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Figure 12. Determination of deltas for describing the STN ratios of references, responses and noise levels. 

The first step in the optimization procedure is to read all the measurements as one matrix. After that 
they are handled systemically by means of two rules namely,  Rule 1; ∆ 1 must be over 6 dB, Rule 
2: ∆ 1 must be over 0 dB. Since the specific spectral lines of some measurements fulfils those rules, 
the next phase is to maximize the ratios ∆ 1 , ∆ 2 and ∆ 3 . In the final results, each spectral line has 
chosen by using the maximum value of the combined STN –ratios, from the group of all the 
measurements. The Matlab® - code is added as Appendix C to the report. 

 
Figure 13. Experimental result of decay per unit, in function of frequency.  

In the above figure, the green dots are drawn to the spectral lines, in which both the reference and 
response has been overhead of the defined noise threshold values. The red points means that the 
reference has been clearly over the noise level but response has been in the noise level. Thus, the 
red points presents the minimum decay values for the frequency lines they are drawn. Solid blue 
line is calculated by moving average through the green points. 
 
One can observe from the figure, that under 20 kHz there is a range in which the negative 
attenuation, i.e. amplification is presented. After that range, namely 70…90 kHz, the strong stop 



 

band is noticed. Beginning from about 100 kHz, what the higher the frequency is the higher 
attenuation levels are found. Moreover, the amount of high attenuation peaks / frequency is rapidly 
increasing. However, there are found some very narrow pass bands over the higher frequency range. 
In theory, the sound / vibration can propagate by using those few pass bands, but the energy content 
of the original signal is rapidly loosen. 
 
Referring to the results of the theoretical study (figures 7 and 8), it can be concluded that the results 
are correlated quite a well. The base level of the attenuation is below 2 dB in theoretical and that 
same it is also in experimental study, up to 150 kHz. Add to this, the theoretical 2 DOF model 
predicted strong pass bands to the range of 0…20 kHz and that is true also in experimental model. 
Furthermore, both models are proposing the larger pass band to the just before 50 kHz and, around 
70 kHz, the strong stop band is arising.  



 

3 Steam leaks into the furnace 

The relevant question is the size of steam leaks that one might expect to be able to detect using 
microphones listening to the noise inside the boiler (via tubular waveguides), and also the frequency 
bands that are relevant to monitoring. We give this topic less attention, so as to concentrate on the 
bottom wall, but a brief theoretical discussion is nevertheless provided. 
 
According to the theory of Lighthill, a free jet acts like a quadropole. A quadropole source emits 
acoustic power, which is proportional to the cross-sectional area of the hole (diameter d), and the 
eighth power of the mean flow velocity U,  
 

82UdWq ∝ .             ( 3.1 ) 
 
The resulting spectrum is a broad-banded noise, centered around the Strouhal frequency  
 

fs = U / d.             ( 3.2 ) 
 
A reasonable assumption is that the sound field in the boiler is dominated by the diffuse field, which 
tends to be the case in an environment with hard walls, hard reflectors / scatterers (such as pipes), 
and relatively large dimensions (in wavelengths), such as the inside of the boiler. For a diffuse 
sound field, the squared rms-pressure 2~p  is given by 
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where A′ is the “room constant”, a measure of the net sound absorptivity of the surfaces of the 
enclosed space (in this case, the inside of the boiler). 
 
The sound from a steam leak in boiler is thus estimated to be 
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The constant K is best estimated from published results of actual steam leaks, since it has not been 
possible in this project to measure an actual steam leak into a boiler (and it is not clear how K could 
be extrapolated or scaled from other gases, such as air, leaking into environments other than the hot 
flue gas environment of the recovery boiler). Defining a difference ∆ between the sound pressure 
level Lp at some monitoring microphone point due to a steam leak, and that due to operational noise 
Lp,bkgd , 
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where C = 10 log K. From gas dynamics, it is known that U is insensitive to d in turbulent flow, so 
that 
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[Buckner & Paradis, 1990] simulated a leak using “an electronic driver powered by a white-noise 
generator, and an amplifier”; the signal generated was claimed to be representative of the sound 
from a leak of superheated steam in a recovery boiler through a d = 3.2 mm diameter hole, 
presumably at pressures and temperatures typical of an operating boiler. The plotted results of the 
sound level with and without the leak (the second representing, thus, background noise) show that 
the leak-induced sound field is typically about ∆ = 10 dB above the background noise level, by 
visual inspection, throughout a bandwidth of about 2 kHz. Hence, 
 

dB9.1log202 =−∆= dC  
 
is back calculated. A reasonable guess at a detectability criterion is that, to be detected by a 
monitoring system, sound at the microphone from a leak should probably rise at least ∆ = 3 dB 
above the background noise. That being so, then the smallest leak that would be heard under the 
same conditions as in [Buckner & Paradis, 1990] is 
  

mm 4.110 20
 9.1 0.3

==
−

d  
 
But, unfortunately, the Buckner & Paradis paper leaves many details unreported: microphone 
location with respect to the leak location, for the specific case for which results are plotted; the basis 
for the amplitude and frequency content of the simulation signal selected; etc. So, the result of the 
reasoning presented here is only that in a “typical boiler” (pressure, temperature), with a “typical” 
microphone position, the smallest hole detected would be about 1.4 mm. Moreover, that result relies 
completely on the electronically generated “simulated” leak signal having been truly representative 
of the actual sound that would have been generated by a 3.2 mm leak. 
 
The reasoning used is more valuable than the result itself, because of the lack of unambiguous input 
information. Should more detailed results become available, the same reasoning could be applied to 
obtain a more reliable result. 
 
Additionally, this work has included measurements of the sound pressure level inside the boiler at 
Rauma, while in operation. This was done with a tubular waveguide that entered the boiler through 
an access port near the black liquor spray nozzles. The orientation of the waveguide was slowly 
changed throughout the nearly 1 minute measurement interval (without any systematic angle – time 
dependence), in order to build a kind of average. Figure 9 shows these results in waterfall form, and 
figure 10 shows the overall level (on the bands 0-20 kHz and 5-20 kHz in the upper and lower 
curves, respectively) versus time. 
 



 

 
Figure 14. Sound pressure level inside the boiler.  

 
(a) Overall level on the 5-20 kHz band 
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(b) Overall level on the 5-20 kHz band 
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Figure 15. Overall sound pressure level inside the boiler, in (a) the 5-20 kHz band, and (b) the 0-20 kHz band. 

These results could be used in combination with any new data that should become available on the 
sound power output from a leak, to give a new assessment of detectability versus hole size. 



 

4 Conclusions 

• High attenuation occurs across the pipes in the bottom wall, at the high frequencies typically 
monitored by acoustic emission transducers. This may result in a poor signal-to-noise ratio for 
water leaks that occur such that the nearest monitoring transducer is separated from the leak by 
several pipes. That situation risks making the leak very difficult to detect. 
 
• However, there is reason to believe that certain narrow passbands do exist; these would be 
promising bands for monitoring. The current work does predict a few such bands (40 kHz, 135 kHz, 
160 kHz), but uncertainties of the smelt properties make these predictions tenuous. 
 
• Steam leaks down to 1.4 mm in the furnace can probably be detected, but with reservations about 
the published input data on which that conclusion is based. However, the logic presented to arrive at 
the conclusion would be useful should better input data become available. 
 
The following are recommended as future research topics: 
 
• An analytical study of the background noise from droplet expansion and combustion, in both the 
boiler interior (for steam leak monitoring) and in the bottom wall (for water leak monitoring). This 
is an interesting, but probably very difficult, thermo-acoustic problem. The drops probably act, 
acoustically, as a distribution of monopoles sources, since a volumetric expansion is the physical 
mechanism of a monopole source. However, the frequency content from each drop source will 
depend on the expansion rate or gas expulsion rate; thus, the droplet size distribution is an important 
factor. The monopoles radiate into the environment of the boiler, which can probably be 
characterized as a reverberant environment. Another aspect of this question is the sound-structure 
interaction at the bottom wall; i.e., how effectively does the droplet noise excite structure-borne 
sound in the bottom wall? 
 
• A study of the mechanism for generation of sound by the leak (or developing leak). Is it… 

o metal cracking, or 
o turbulent fluid flow through a fissure, or  
o localized chemical reaction of the water with the smelt, or 
o localized rapid phase change of the water as it enters the smelt  

that one should seek to monitor? What are the respective vibrational power inputs from each of 
these mechanisms into the bottom wall? Acoustic emission sensors are often successful in listening 
for cracking in structures. In the recovery boiler bottom wall, however, there is, in addition to the 
large attenuation across pipes, also the reservation that the corrosive type of deterioration may not 
give the same kind of energetic cracking as in other AE applications. 
 
• Scale model or other measurement of sound power from a steam leak jet (490oC, 92 bar) into a 
hot environment (with sound speed similar to that in the boiler), knowing the hole diameter. 
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Appendix A: Fortran 77 code for the 18-d.o.f. wave theoretical model. 
 
      PROGRAM BLBOILER 
C 
C Structure-borne sound attenuation in bottom wall of 
black liquor 
C recovery boiler 
C 
C VERSION BB6:  thick plate fin tube 
C               tube based on Graff's thick ring 
theory 
C               corrections also effect long and 
bending stiffness 
C               fluid loading below coincidence: as 
added mass 
C                             above coincidence: as 
damping 
C               adjustable search for roots (in DO 70 
loop) 
C 
      COMPLEX 
KBF,KBT,KLF,KLT,GMBF,GMNF,GMLF,GMBT,GMNT,GMLT,DF,DT,E
F,ET 
      COMPLEX A(18,18),G,AA(3,3) 
      COMPLEX CU,CI,CZ 
      COMPLEX 
KBT0,KLT0,KBF0,KLF0,DF0,DT0,GMOD,TMA,TMB,TMC,ETEFF 
      REAL L,NUF,NUT 
      REAL KC,KSM,KW,KTRIAL,KTR0 
      LOGICAL DMIN,DMIN2 
      DIMENSION DTMT(150,150) 
      OPEN(UNIT=1,FILE='BB6.OUT') 
      CI=CMPLX(0.,1.) 
      CU=CMPLX(1.,0.) 
      CZ=CMPLX(0.,0.) 
      PI=3.141592653 
C ---------------------------------------------------
------------------- 
C Input Properties 
C   geometric 
      HF=.004 
      L=.0127 
      HT=.00185 
      R=.0635/2. 
C   material 
      EFIN=2.1E+11 
      NUF=.3 
      RHOF=7800 
      ETAF=.01 
      ETUBE=2.1E+11 
      NUT=.3 
      RHOT=7800 
      ETAT=.01 
C   smelt 
      CSMELT=1400. 
      RHOSM=2000. 
      FQCT=0. 
      FQCF=0. 
C   water 
      CWATER=1500. 
      RHOW=1000. 
      FQCWT=0. 
C 
C ---------------------------------------------------
------------------- 
C ---MAIN LOOP--- 
C 
C      DO 500 EFQ=4,5 
C      DO 500 IFQ=1,9 
C      FQ=IFQ*10.**EFQ 
C      IF (FQ .LT. 30000.) GO TO 499 
      DO 500 IFQ=3,20 
      FQ=REAL(IFQ)*10000. 
      WRITE(*,*)INT(FQ),' Hz' 
      OM=2.*PI*FQ 
C --------------------------------------------- 
C 
      ICOINC=0 
   20 IF ((FQCT .GT. 0.) .OR. (FQCWT .GT. 0.)) THEN 
        REFFSM=0. 
        REFFW=0. 
        IF (FQCT .GT. 0.) REFFSM=1./SQRT(1.-FQCT/FQ) 
        IF (FQCWT .GT. 0.) REFFW=1./SQRT(1.-FQCWT/FQ) 
        
ETAT=(RHOSM*CSMELT*REFFSM+RHOW*CWATER*REFFW)/(OM*RHOT
*HT) 

      ENDIF 
      IF (FQCF .GT. 0.) THEN 
        REFF=1./SQRT(1.-FQCF/FQ) 
        ETAF=RHOSM*CSMELT*REFF/(OM*RHOF*HF) 
      ENDIF 
C 
      EF=CMPLX(EFIN,EFIN*ETAF) 
      ET=CMPLX(ETUBE,ETUBE*ETAT) 
      DF0=EF*HF*HF*HF/12./(1-NUF*NUF) 
      DT0=ET*HT*HT*HT/12./(1-NUT*NUT) 
C 
      KBF0=CSQRT(CSQRT(OM*OM*RHOF*HF/DF0)) 
      KLF0=OM*CSQRT(RHOF*(1-NUF*NUF)/EF) 
      KBT0=CSQRT(CSQRT(OM*OM*RHOT*HT/DT0)) 
      KLT0=OM*CSQRT(RHOT*(1-NUT*NUT)/ET) 
C 
C Approximate thick-plate corrections (shear & rotary 
inertia) for fin 
      TAU=.83 
      RGYR=HF/SQRT(12.) 
      GMOD=EF/2./(1+NUF) 
      TMA=DF0/RHOF/HF 
      TMB=-OM*OM*(RGYR*RGYR+DF0/GMOD/TAU/HF) 
      TMC=OM**4*RHOF*RGYR*RGYR/GMOD/TAU-OM*OM 
      KBF=CSQRT((-TMB+CSQRT(TMB*TMB-
4.*TMA*TMC))/2./TMA) 
      DF=DF0*(KBF0/KBF)**4 
C 
      KLF=KLF0 
C Approximate curvature, shear & rotary inertia 
corrections for tube 
      C0=SQRT(ETUBE/RHOT/(1-NUT*NUT)) 
      RGYR=HT/SQRT(12.) 
      GMOD=ET/2./(1+NUT) 
      TAU=.83 
      J0=0 
      DO 30 IK=100000,1,-1 
      KTRIAL=10.*KBT0*REAL(IK)/100000. 
      CALL THRING(OM,KTRIAL,RGYR,R,GMOD,TAU,C0,ET,AA) 
      CALL CDET(AA,CDAA) 
      IF (IK .LT. 3) GO TO 29 
      P1=(CD00-CD0)/CD0 
      P2=(CDAA-CD0)/CD0 
      IF ((P1 .GT. .01) .AND. (P2 .GT. .01)) THEN 
       J0=J0+1 
       IF (J0 .EQ. 2) KLT=KTR0 
       IF (J0 .EQ. 1) KBT=KTR0 
      ENDIF 
   29 CD00=CD0 
      CD0=CDAA 
      KTR0=KTRIAL 
   30 CONTINUE 
      DT=DT0*(KBT0/KBT)**4 
      ETEFF=ET*(KLT0/KLT)**2 
C 
C Smelt interaction correction 
      IF (ICOINC .EQ. 1) GO TO 40 
      IF (FQCT .EQ. 0.) THEN 
        KSM=OM/CSMELT 
        IF (KSM .GT. REAL(KBT)) THEN 
          FQCT=OFQ+(FQ-OFQ)*(KSM-RKBT0)/(REAL(KBT)-
RKBT0) 
          ICOINC=1 
        ELSE 
          
FAC=SQRT(SQRT(1.+RHOSM/(RHOT*HT*SQRT(REAL(KBT)**2-
KSM*KSM)))) 
          KBT=KBT*FAC 
        ENDIF 
      RKBT0=REAL(KBT) 
      ENDIF 
C 
      IF (FQCF .EQ. 0.) THEN 
        KSM=OM/CSMELT 
        IF (KSM .GT. REAL(KBF)) THEN 
          FQCF=OFQ+(FQ-OFQ)*(KSM-RKBF0)/(REAL(KBF)-
RKBF0) 
          ICOINC=1 
        ELSE 
          
FAC=SQRT(SQRT(1.+RHOSM/(RHOF*HF*SQRT(REAL(KBF)**2-
KSM*KSM)))) 
          KBF=KBF*FAC 
        ENDIF 



 

      RKBF0=REAL(KBF) 
      ENDIF 
C 
      IF (FQCWT .EQ. 0.) THEN 
        KW=OM/CWATER 
        IF (KW .GT. REAL(KBT)) THEN 
          FQCWT=OFQ+(FQ-OFQ)*(KW-RKBT0)/(REAL(KBT)-
RKBT0) 
          ICOINC=1 
        ELSE 
          
FAC=SQRT(SQRT(1.+RHOSM/(RHOT*HT*SQRT(REAL(KBT)**2-
KW*KW)))) 
          KBT=KBT*FAC 
        ENDIF 
      RKBT0=REAL(KBT) 
      ENDIF 
      IF (ICOINC .EQ. 1) GO TO 20 
C 
 40   DIVIS=15. 
 50   IFOUND =0 
      DO 70 IREG=1,150 
      DO 70 IIMG=1,150 
      G=CMPLX((REAL(IREG))/DIVIS,(REAL(IIMG)-
75.)/11.9) 
      CALL 
COEFF(OM,HF,L,HT,R,EF,ETEFF,KBF,KBT,KLF,KLT,DF,DT,G,A
) 
      CALL LOGDET(A,DETR) 
      DTMT(IREG,IIMG)=DETR 
 70   CONTINUE 
      IWRIT=0 
      DO 75 I=2,149 
      IF (IWRIT .EQ. 1) GO TO 75 
      DO 74 J=2,149 
      DTMT0=DTMT(I,J) 
      IMIN=1 
      DO 72 II=1,40 
      DO 72 JJ=1,40 
      IF (I-20+II .LT. 1) GO TO 72 
      IF (J-20+JJ .LT. 1) GO TO 72 
      IF (I-20+II .GT. 150) GO TO 72 
      IF (J-20+JJ .GT. 150) GO TO 72 
      DTMTC=DTMT(I-20+II,J-20+JJ) 
      IF (DTMTC .LT. DTMT0) IMIN=0 
 72   CONTINUE 
      DMIN=(IMIN .EQ. 1) 
      DMIN2=((DMIN) .AND. (IWRIT .EQ. 0)) 
      IF (DMIN) IWRIT=1 
      GRE=(REAL(I))/100. 
      GIM=(REAL(J)-75.)/11.9 
      ATTN=GRE 
      ADIST=ATTN/(L+2.*R) 
      DECAY=-20.*LOG10(EXP(-ATTN)) 
      DECDIS=-20.*LOG10(EXP(-ADIST)) 
C      IF (DMIN2) 
WRITE(1,*)FQ,',',DECAY,',',ETAF,',',ETAT,',',FQCF,','
,F 
C     *QCT,',',FQCWT,',',J0,',',DIVIS 
      IF (DMIN2) WRITE(1,*)FQ,',',DECAY,',',DIVIS 
      IF (DMIN2) IFOUND=1 
 74   CONTINUE 
 75   CONTINUE 
      IF (IFOUND .EQ. 0) THEN 
        WRITE(*,*)'ANOTHER PASS' 
        DIVIS=DIVIS*10. 
      ENDIF 
      IF ((IFOUND .EQ. 0) .AND. (DIVIS .LE. 900000.)) 
GO TO 50 
C 
.....................................................
................. 
  499 CONTINUE 
      CLT=OM/REAL(KLT) 
      CBT=OM/REAL(KBT) 
      OFQ=FQ 
  500 CONTINUE 
      END 
C 
C 
C 
*****************************************************
***************** 
      SUBROUTINE 
COEFF(OM,HF,L,HT,R,EF,ET,KBF,KBT,KLF,KLT,DF,DT,G,A) 
C 

      COMPLEX 
KBF,KBT,KLF,KLT,GMBF,GMNF,GMLF,GMBT,GMNT,GMLT,DF,DT,E
F,ET 
      COMPLEX A(18,18),G 
      COMPLEX CU,CI,CZ 
      REAL L 
      CI=CMPLX(0.,1.) 
      CU=CMPLX(1.,0.) 
      CZ=CMPLX(0.,0.) 
      PI=3.141592653 
C 
      GMBF=CEXP(-CI*KBF*L) 
      GMNF=CEXP(-KBF*L) 
      GMLF=CEXP(-CI*KLF*L) 
      GMBT=CEXP(-CI*KBT*PI*R) 
      GMNT=CEXP(-KBT*PI*R) 
      GMLT=CEXP(-CI*KLT*PI*R) 
C 
      DO 200 I=1,18 
      DO 200 J=1,18 
      A(I,J)=CZ 
  200 CONTINUE 
C 
      A(1,2)=CU 
      A(1,3)=CU 
      A(1,4)=CU 
      A(1,11)=GMBF*EXP(-G) 
      A(1,12)=GMNF*EXP(-G) 
      A(1,13)=GMLT 
C 
      A(2,4)=CU 
      A(2,7)=-CU 
      A(2,13)=GMLT 
      A(2,16)=-GMLT 
C 
      A(3,2)=GMBF*EXP(G) 
      A(3,3)=GMNF*EXP(G) 
      A(3,4)=-GMLT 
      A(3,11)=CU 
      A(3,12)=CU 
      A(3,13)=-CU 
C 
      A(4,4)=GMLT 
      A(4,7)=-GMLT 
      A(4,13)=CU 
      A(4,16)=-CU 
C 
      A(5,1)=CU 
      A(5,5)=-CU 
      A(5,6)=-CU 
      A(5,10)=GMLF*EXP(-G) 
      A(5,14)=-GMBT 
      A(5,15)=-GMNT 
C 
      A(6,5)=CU 
      A(6,6)=CU 
      A(6,8)=-CU 
      A(6,9)=-CU 
      A(6,14)=GMBT 
      A(6,15)=GMNT 
      A(6,17)=-GMBT 
      A(6,18)=-GMNT 
C 
      A(7,1)=GMLT*EXP(G) 
      A(7,5)=GMBT 
      A(7,6)=GMNT 
      A(7,10)=CU 
      A(7,14)=CU 
      A(7,15)=CU 
C 
      A(8,5)=GMBT 
      A(8,6)=GMNT 
      A(8,8)=-GMBT 
      A(8,9)=-GMNT 
      A(8,14)=CU 
      A(8,15)=CU 
      A(8,17)=-CU 
      A(8,18)=-CU 
C 
      A(9,2)=-CI*KBF 
      A(9,3)=-KBF 
      A(9,5)=-CI*KBT 
      A(9,6)=-KBT 
      A(9,11)=CI*KBF*GMBF*EXP(-G) 
      A(9,12)=KBF*GMNF*EXP(-G) 
      A(9,14)=CI*KBT*GMBT 
      A(9,15)=KBT*GMNT 
C 



 

      A(10,5)=CI*KBT 
      A(10,6)=KBT 
      A(10,8)=CI*KBT 
      A(10,9)=KBT 
      A(10,14)=-CI*KBT*GMBT 
      A(10,15)=-KBT*GMNT 
      A(10,17)=-CI*KBT*GMBT 
      A(10,18)=-KBT*GMNT 
C 
      A(11,2)=-CI*KBF*GMBF*EXP(G) 
      A(11,3)=-KBF*GMNF*EXP(G) 
      A(11,5)=-CI*KBT*GMBT 
      A(11,6)=-KBT*GMNT 
      A(11,11)=CI*KBF 
      A(11,12)=KBF 
      A(11,14)=CI*KBT 
      A(11,15)=KBT 
C 
      A(12,5)=CI*KBT*GMBT 
      A(12,6)=KBT*GMNT 
      A(12,8)=CI*KBT*GMBT 
      A(12,9)=KBT*GMNT 
      A(12,14)=-CI*KBT 
      A(12,15)=-KBT 
      A(12,17)=-CI*KBT 
      A(12,18)=-KBT 
C 
      A(13,2)=CI*KBF*KBF*KBF*DF 
      A(13,3)=KBF*KBF*KBF*DF 
      A(13,4)=-CI*KLT*ET*HT 
      A(13,7)=CI*KLT*ET*HT 
      A(13,11)=-CI*KBF*KBF*KBF*DF*GMBF*EXP(-G) 
      A(13,12)=KBF*KBF*KBF*DF*GMNF*EXP(-G) 
      A(13,13)=CI*KLT*ET*HT*GMLT 
      A(13,16)=-CI*KLT*ET*HT*GMLT 
C 
      A(14,2)=CI*KBF*KBF*KBF*DF*GMBF*EXP(G) 
      A(14,3)=-KBF*KBF*KBF*DF*GMNF*EXP(G) 
      A(14,4)=CI*KLT*ET*HT*GMLT 
      A(14,7)=CI*KLT*ET*HT*GMLT 
      A(14,11)=-CI*KBF*KBF*KBF*DF 
      A(14,12)=KBF*KBF*KBF*DF 
      A(14,13)=-CI*KLT*ET*HT 
      A(14,16)=-CI*KLT*ET*HT 
C 
      A(15,1)=-CI*KLF*EF*HF 
      A(15,5)=-CI*KBT*KBT*KBT*DT 
      A(15,6)=KBT*KBT*KBT*DT 
      A(15,8)=-CI*KBT*KBT*KBT*DT 
      A(15,9)=KBT*KBT*KBT*DT 
      A(15,10)=CI*KLF*EF*HF*GMLF*EXP(-G) 
      A(15,14)=CI*KBT*KBT*KBT*DT*GMBT 
      A(15,15)=-KBT*KBT*KBT*DT*GMNT 
      A(15,17)=CI*KBT*KBT*KBT*DT*GMBT 
      A(15,18)=-KBT*KBT*KBT*DT*GMNT 
C 
      A(16,1)=-CI*KLF*EF*HF*GMLF*EXP(G) 
      A(16,5)=-CI*KBT*KBT*KBT*DT*GMBT 
      A(16,6)=KBT*KBT*KBT*DT*GMNT 
      A(16,8)=-CI*KBT*KBT*KBT*DT*GMBT 
      A(16,9)=KBT*KBT*KBT*DT*GMNT 
      A(16,10)=CI*KLF*EF*HF 
      A(16,14)=CI*KBT*KBT*KBT*DT 
      A(16,15)=-KBT*KBT*KBT*DT 
      A(16,17)=CI*KBT*KBT*KBT*DT 
      A(16,18)=-KBT*KBT*KBT*DT 
C 
      A(17,2)=-KBF*KBF*DF 
      A(17,3)=KBF*KBF*DF 
      A(17,5)=KBT*KBT*DT 
      A(17,6)=-KBT*KBT*DT 
      A(17,8)=-KBT*KBT*DT 
      A(17,9)=KBT*KBT*DT 
      A(17,11)=-KBF*KBF*DF*GMBF*EXP(-G) 
      A(17,12)=KBF*KBF*DF*GMNF*EXP(-G) 
      A(17,14)=KBT*KBT*DT*GMBT 
      A(17,15)=-KBT*KBT*DT*GMNT 
      A(17,17)=-KBT*KBT*DT*GMBT 
      A(17,18)=KBT*KBT*DT*GMNT 
C 
      A(18,2)=-KBF*KBF*DF*GMBF*EXP(G) 
      A(18,3)=KBF*KBF*DF*GMNF*EXP(G) 
      A(18,5)=KBT*KBT*DT*GMBT 
      A(18,6)=-KBT*KBT*DT*GMNT 
      A(18,8)=-KBT*KBT*DT*GMBT 
      A(18,9)=KBT*KBT*DT*GMNT 
      A(18,11)=-KBF*KBF*DF 
      A(18,12)=KBF*KBF*DF 

      A(18,14)=KBT*KBT*DT 
      A(18,15)=-KBT*KBT*DT 
      A(18,17)=-KBT*KBT*DT 
      A(18,18)=KBT*KBT*DT 
C 
      RETURN 
      END 
C 
C 
*****************************************************
***************** 
      SUBROUTINE LOGDET(A,DETR) 
C Computes the natural logarithm of the determinant 
of complex matrix A  
      COMPLEX A(18,18),AT(18,18),SW,MODF,FV,CU 
      M=18 
      CU=CMPLX(1.,0.) 
      MODF=CU 
      DETR=0 
      IP=0 
      DO 200 I=1,M 
      DO 200 J=1,M 
      AT(I,J)=A(I,J) 
 200  CONTINUE 
 205  IP=IP+1 
      DO 207 J=M,IP,-1 
      IF (CABS(AT(J,IP)) .GT. 1E-12) IFNZ=J 
 207  CONTINUE 
      IF (IFNZ .GT. IP) THEN 
        DO 209 J=1,M 
        SW=AT(IP,J) 
        AT(IP,J)=AT(IFNZ,J) 
        AT(IFNZ,J)=SW 
 209    CONTINUE 
        MODF=-MODF 
      ENDIF 
      FV=AT(IP,IP) 
      DO 210 J=IP,M 
      AT(IP,J)=AT(IP,J)/FV 
 210  CONTINUE 
      MODF=MODF/FV 
      DETR=DETR-LOG(CABS(FV)) 
      DO 220 I=IP+1,M 
      FV=AT(I,IP) 
      DO 220 J=IP,M 
      AT(I,J)=AT(I,J)-FV*AT(IP,J) 
 220  CONTINUE 
      IF (IP .LT. M-1) GO TO 205 
      FACR=1. 
      DO 230 I=1,M 
      FACR=FACR*CABS(AT(I,I)) 
 230  CONTINUE 
      DETR=DETR+LOG(FACR) 
      RETURN 
      END 
C 
C 
*****************************************************
***************** 
      SUBROUTINE 
THRING(OM,KTRIAL,RGYR,R,G,TAU,C0,E,AA) 
      REAL KTRIAL,KR 
      COMPLEX AA(3,3),CI,E,G 
      CI=CMPLX(0.,1.) 
      C=OM/KTRIAL 
C 
      ER=RGYR*KTRIAL 
      KR=RGYR/R 
      GR=TAU*G/E 
      CR2=C*C/C0/C0 
C 
      AA(1,1)=-
(ER*ER+KR*KR*ER*ER+GR*KR*KR*(1.+KR*KR)-ER*ER*CR2) 
      AA(1,2)=CI*KR*ER*(1.+KR*KR+GR*(1.+KR*KR)) 
      AA(1,3)=KR*(ER*ER+GR*(1.+KR*KR)+ER*ER*CR2) 
C 
      AA(2,1)=-KR*(ER*ER+GR*(1.+KR*KR)+ER*ER*CR2) 
      AA(2,2)=CI*ER*(KR*KR+GR*(1.+KR*KR)) 
      AA(2,3)=ER*ER+GR*(1.+KR*KR)-ER*ER*CR2 
C 
      AA(3,1)=CI*KR*ER*(1.+KR*KR+GR*(1.+KR*KR)) 
      AA(3,2)=KR*KR+KR**4+GR*(1.+KR*KR)*ER*ER-
ER*ER*CR2 
      AA(3,3)=-CI*ER*(KR*KR+GR*(1.+KR*KR)) 
C 
      RETURN 
      END 
C 



 

C 
*****************************************************
***************** 
      SUBROUTINE CDET(A,CDETR) 
C Computes the modulus of the determinant of complex 
3X3 matrix A  
      COMPLEX A(3,3),DETR,D1,D2,D3 
      D1=A(2,2)*A(3,3)-A(3,2)*A(2,3) 
      D2=A(2,1)*A(3,3)-A(3,1)*A(2,3) 
      D3=A(2,1)*A(3,2)-A(3,1)*A(2,2) 
      DETR=A(1,1)*D1-A(1,2)*D2+A(1,3)*D3 
      CDETR=CABS(DETR) 
      RETURN 
      END 
 
 
 
 
 



 

 
Appendix B: Fortran 77 code for the 2-d.o.f. finite difference model. 
 
 
 
      PROGRAM BOILER1b 
C 
C Analysis of structure-borne sound propagation in 
the bottom wall of a 
C black-liquor recovery boiler, transverse to 
coolant-water tubes. 
C 
C version 1: * time-domain finite difference approach 
C            * lumped element approximation of wall 
components:         
C                - filled pipes  rigid 
masses/rotational inertias 
C                - fins as vertical and rotational 
springs 
C            * damping not considered (from sludge, 
welds, etc) 
C            * quasi-longitudinal waves not 
considered 
C version 1b: same as version 1, except that the 
multiple runs are made 
C             with a frequency loop; for ea freq 
step, tonal excitation 
C             is given over a total time of 100 times 
the tonal period, 
C             with a sampling frequency one-tenth of 
the excitation 
C             frequency. The frequency response at 
the excitation freq 
C             is found at the measurement points 
(integral of the prod- 
C             uct of the response and a unit sine 
function,  integral of 
C             similar product with cos function --> 
norm of those two 
C             integrals); from the amplitudes, a 
decay rate is found in  
C             dB/repeating element. The frequency is 
stepped 
C             logarithmically. 
C 
      DIMENSION V(100),VOLD(100),VNEW(100) 
      DIMENSION TH(100),THOLD(100),THNEW(100) 
      REAL M,JROT,K,NU,LFIN 
C 
      OPEN(UNIT=1,FILE='B1b.OUT') 
C 
      PI=3.141592654 
C ...................input 
parameters................................... 
      E=2.1E+11 
      RHO=7800. 
      NU=.3 
      RHOWAT=1000. 
      TTUBE=.00185 
      TFIN=.004 
      LFIN=.0127 
      DIATUB=.0635 
C 
      R=DIATUB/2. 
      DMOD=(E*TFIN**3)/(12.*(1.-NU*NU)) 
C 
C ...................calculated structural 
parameters................... 
      M=2.*PI*R*TTUBE*RHO+PI*R*R*RHOWAT 
      JROT=2.*PI*R*R*R*TTUBE*RHO 
      K=12.*DMOD/LFIN**3 
      D=LFIN*LFIN/6. 
C 
C      WRITE(*,*)'filled tube mass  M = ',M,' kg per 
m' 
C      WRITE(*,*)'...rot inertia JROT = ',JROT,' 
kg*m^2 per m' 
C      WRITE(*,*)'fin stiffness     K = ',K,' N/m per 
m' 
C      WRITE(*,*)'fin offset dist   D = ',D,' m' 
C ...................measurement 
parameters............................. 
C excitation freq FQ, computational time step DT, 
total time TSTOP, 

C first measurement element MEAS1, second measurement 
elemenent MEAS2 
      WRITE(*,*)' EXC FREQ, TIME STEP 1, ACTUAL TIME 
STEP, TOT TIME' 
      DO 400 IFQEXP=2,5 
      DO 400 IFQFAC=1,9 
      FQ=REAL(IFQFAC)*10**IFQEXP 
      DT0=.00001 
      DT1=1./(10.*FQ) 
      DT=DT1 
      IF (DT .GT. DT0) DT=DT0 
      TSTOP=100./FQ 
      WRITE(*,*)FQ,' Hz,',DT1,' s,',DT,' s,',TSTOP,' 
s' 
      MEAS1=2 
      MEAS2=40 
C      F1=(K*DT*DT/M) 
C      F2=(K*D*DT*DT/JROT/2.) 
C      WRITE(*,*)F1,F2 
C      ISCN=10000 
C      IWRITE=1 
C .......................initial 
conditions............................. 
C      IW=0 
C      ISC=0 
C      WRITE(*,*)' ' 
C      WRITE(*,*)'running...' 
      AMPL1A=0. 
      AMPL1B=0. 
      AMPL2A=0. 
      AMPL2B=0. 
      DO 50 J=1,100 
      V(J)=0. 
      VOLD(J)=0. 
      TH(J)=0. 
      THOLD(J)=0. 
   50 CONTINUE 
C .......................system 
response................................ 
      T=0. 
  100 T=T+DT 
      VNEW(1)=0. 
      VNEW(100)=0. 
      THNEW(1)=SIN(2.*PI*FQ*T) 
      THNEW(100)=0. 
      DO 200 J=2,99 
      C1=2.*V(J)-V(J-1)-V(J+1)+(D/2.)*TH(J+1)-
(D/2.)*TH(J-1) 
      VNEW(J)=2.*V(J)-VOLD(J)-(K*DT*DT/M)*C1 
      C2=D*TH(J)+V(J-1)-
V(J+1)+(D/2.)*TH(J+1)+(D/2.)*TH(J-1) 
      THNEW(J)=2.*TH(J)-THOLD(J)-
(K*D*DT*DT/JROT/2.)*C2 
  200 CONTINUE 
C 
      AMPL1A=AMPL1A+SIN(2.*PI*FQ*T)*VNEW(MEAS1) 
      AMPL1B=AMPL1B+COS(2.*PI*FQ*T)*VNEW(MEAS1) 
      AMPL2A=AMPL2A+SIN(2.*PI*FQ*T)*VNEW(MEAS2) 
      AMPL2B=AMPL2B+COS(2.*PI*FQ*T)*VNEW(MEAS2) 
C 
C      IW=IW+1 
C      IF (IW .EQ. IWRITE) THEN 
C       
WRITE(1,*)T,',',VNEW(MEAS1),',',THNEW(MEAS1),',',VNEW
(MEAS2),',', 
C     *THNEW(MEAS2) 
C       IW=0 
C      ENDIF 
C      ISC=ISC+1 
C      IF (ISC .EQ. ISCN) THEN 
C        WRITE(*,*)T,' s' 
C        ISC=0 
C      ENDIF 
C 
      DO 250 J=1,100 
      VOLD(J)=V(J) 
      THOLD(J)=TH(J) 
      V(J)=VNEW(J) 
      TH(J)=THNEW(J) 



 

  250 CONTINUE 
      IF (T .LT. TSTOP) GO TO 100 
      AMPL1=SQRT(AMPL1A*AMPL1A+AMPL1B*AMPL1B) 
      AMPL2=SQRT(AMPL2A*AMPL2A+AMPL2B*AMPL2B) 
      AELEM=(-1./(MEAS2-MEAS1))*LOG(AMPL2/AMPL1) 
      ADIST=AELEM/(LFIN+2.*R) 
      DECAY=-20.*LOG10(EXP(-AELEM)) 
      
WRITE(1,*)FQ,',',DECAY,',',AMPL1,',',AMPL2,',',AELEM,
',',ADIST 
      WRITE(*,*)'          DECAY=',DECAY,'dB' 
  400 CONTINUE 
      END 
 



 

Appendix C: Matlab® code for the Skoghall measurements

 
% Projekti Sooda, Skoghallin mittaukset 
% 
% Tämä file avaa kaikki mittaustulokset sekä etsii 
% etsii parhaan mittauksen jokaiselle yksittäiselle spektriviivalle. 
%  
% Kuitenkin, jos ehtoja koskien STN-suhdetta ei läpäistä,  
% k.o. spektriviivalle ei tulosteta mitään. 
%  
% Tuloksena on kuva värähtelyn vaimenemisesta taajuuden 
funktiona, 
% tulos on normalisoitu yhdelle putkipoikkileikkaukselle. 
% 
% 
% 
% Author Ville Jarvinen 05/2005 
% 
% 
% 
clear all, close all 
 
% Measurement directory 
path = 'C:\Ville\Sooda\mittaus\Skoghall\data\Matlab\'; 
 
% Define noise levels 
noise = load([path,'0405_009t']); 
[fnd1,f] = oma_fft_data(noise.ch(1).data,5e5); 
fnd2 = oma_fft_data(noise.ch(2).data,5e5); 
nl1 = 3*oma_ma(abs(fnd1),55); 
nl2 = 3*oma_ma(abs(fnd2),55); 
% figure(11),clf, grid on 
% line_1 = line(f,abs(fnd1),'Color','b'); 
% line_2 = line(f,nl1,'Color','r'); 
clear noise  
 
% intialisation of calculator 
calc = 0; 
 
% for loop to load all the measurements 
for k = 1:2; 
     
    if k==1, 
        date = '0405'; 
        file_nos = [0:8 11:16]; 
    else 
        date = '0505'; 
        file_nos = [1:13]; 
    end 
     
    for i = file_nos; 
        % Load the data 
        if i<10,  
            fname = [path,date, '_00', num2str( i ) ,'t']; else, 
            fname = [path,date, '_0' , num2str( i ) ,'t'];  
        end         
        data = load(fname);  
         
        % Factor means the number of pipe cross_sections, over which 
the current measurement is performed 
        if strcmp(date,'0405') 
            if i<9 
                factor = 20; 
            else 
                factor = 1; 
            end 
        else 
            factor = 10; 
        end 
         
        % FFT for data 
        fd1 = abs( oma_fft_data(data.ch(1).data,5e5) ); 
        fd2 = abs( oma_fft_data(data.ch(2).data,5e5) );       

         
        % Increase the calculator value by 1 
        calc = calc+1; 
         
        % Calculate the ratios; r1 is ref./noise, r2 is resp./noise, r3 is 
ref/resp. 
        r1 = fd1./nl1; 
        r2 = fd2./nl2; 
        r3 = fd1./fd2;     
         
        % Create the matrices for all the measurements 
        FACTOR(calc,1) = factor; 
        % DELTA changes ratios to dB-scale 
        DELTA1(calc,:) = 20*log10(r1); 
        DELTA2(calc,:) = 20*log10(r2); 
        DELTA3(calc,:) = 20*log10(r3);     
         
        % Save spectral datas 
        d1(calc,:) = fd1;     
        d2(calc,:) = fd2;         
         
    %     figure(calc); clf, grid on 
    %     set(gcf,'position',[300+10*i 400+10*i 700 400]) 
    %     title(['Meas. ',date, '-0', num2str(i),'. 
Decay']),xlabel('Hz'),ylabel('dB') 
    %     line(f, DELTA1, 'color', 'r','linestyle','-', 'marker', 
'none','markersize',2.2); 
    end 
end 
 
% Maximization of STN -ratio 
%===============================================
================== 
% Rule 1; signal to noise ratio for reference must be good enough (in 
dB:s) 
 
rule_1 = DELTA1 >=6; 
rule_2 = DELTA2 >=0; 
 
%[D2_min, D2_min_index] = min(DELTA2); 
% Maximize the DELTA3 + DELTA2 
[D3_max, D3_max_index] = max(DELTA2 + DELTA3 + 
DELTA1); 
  
% Selection of data points, according to the rule_1 and max. of sum 
of DELTAs 
DECAY   = zeros(1,length(fd1)); 
factors = zeros(1,length(fd1)); 
 
for i=1:length(fd1) 
    mi3 = D3_max_index(i); 
    if rule_1(mi3,i)==1 & rule_2(mi3,i)==1 
        data_ref = d1(mi3,i); 
        data_resp = d2(mi3,i); 
        DECAY(i) = (20*log10(data_ref/data_resp) )/ FACTOR(mi3); 
        factors(1,i)=FACTOR(mi3);         
    else 
        DECAY(i) = 0; 
    end 
end 
 
DECAY2   = zeros(1,length(fd1)); 
factors2 = zeros(1,length(fd1)); 
 
for i=1:length(fd1) 
    mi3 = D3_max_index(i); 
    if rule_1(mi3,i)==1 & rule_2(mi3,i)==0 
        data_ref = d1(mi3,i); 
        data_resp = d2(mi3,i); 
        DECAY2(i) = (20*log10(data_ref/data_resp) )/ FACTOR(mi3); 
        factors2(1,i)=FACTOR(mi3);         
    else 



 

        DECAY2(i) = 0; 
    end 
end 
 
% ind separates the good data points, bad ones will not be drawn at 
all 
ind = DECAY ~=0; 
ind2 = DECAY2 ~=0; 
figure(88),grid on, plot(f(ind),D3_max_index(ind),'ro'),grid on 
set(gcf,'position',[200 50 700 600]) 
% Figure 
figure(89); clf, grid on 
set(gcf,'position',[500 350 700 600],'visible','on') 
set(gca,'xlim',[0 250e3],'ylim',[-5 25]) 
set(gca,'XTickLabelMode','manual','xtick',[1:25]*1e4,'xticklabel','10||
||50|||||100|||||150|||||200|||||250') 
title(['Meas. ',date, '-0', num2str(i),'. 
Decay']),xlabel('kHz'),ylabel('dB') 
line(f(ind), DECAY(ind), 'color', [.5 1 .5],'linestyle','none', 'marker', 
'.','markersize',2.2); 
line(f(ind2), DECAY2(ind2), 'color', [1 .5 .5],'linestyle','none', 
'marker', '.','markersize',2.2); 
line(f(ind), oma_ma(DECAY(ind),133), 'color', [0 0 1],'linestyle','-', 
'marker', 'none','markersize',2.2); 
 
leg=legend('Decay, strong Ref. & Resp.','Decay at least; strong Ref. 
& weak Resp.','Moving average over the decay'); 
 
% Save the figure in jpg.format 
set(gcf,'PaperUnits','centimeters','Papertype','A4','PaperOrientation','p
ortrait', 'Paperposition',[0.3 0.3 17 10.0]) 
spath='C:\Ville\Sooda\mittaus\Skoghall\figs'; 
figure(calc),saveas(gcf, [spath '\000kuva_optimal',num2str(i)], 'jpg') 
set(gcf,'visible','on'); 
 
 
% 
% Lukee kaikki mittausfilet  
% 
% function read_all_files 
% 
% 
% 
% 
clear all, close all 
 
rms = 1; 
file_ind = 1:16; 
lpath = 'C:\Ville\Sooda\Mittaus\Skoghall\Data\wav\0405_0'; 
spath = 'C:\Ville\Sooda\Mittaus\Skoghall\Data\Matlab\0405_0'; 
 
for i = file_ind 
    if i<10,  
        fname = [lpath, '0', num2str( i ) ,'.wav']; 
    else,  fname = [lpath,  num2str( i ) ,'.wav'];  
    end 
    [y,sr,NBITS]=wavread(fname); 
    tmax = length(y)/sr; 
    Index=1:tmax/(1/sr); 
    size_data = size(y); 
    for k = 1:size_data(2);         
        ch(1).name = 'ch_1';      ch(1).Input = 5;       ch(1).Scale = 1; 
        ch(2).name = 'ch_2';      ch(2).Input = 5;       ch(2).Scale = 1; 
        ch(k).data = (y(Index,k) * ch(k).Input*rms * ch(k).Scale)'; 
    end 
 
    if i<10, save([spath, '0', num2str(i),'t','.mat'], 'ch'),else, 
        save([spath, num2str(i),'t','.mat'], 'ch'), end 
 
end 
         
if strcmp(fname(end-8:end),'5_009.wav') 
    for i = 1:size_data(2);         
        ch(i).noise = (y(Index,i) * ch(i).Input*rms * ch(i).Scale)'; 
    end 
else 

    for i = 1:size_data(2); 
        ch(i).data = (y(Index,i) * ch(i).Input*rms * ch(i).Scale)'; 
    end 
end 
 
 
 
 
 
% FUNCTION Moving Average 
function out = oma_ma(data, bb) 
% 
% 
% 
% Moving Average 
% 
% inputs: 
% data: data to be averaged 
% bb: number of data points to be used in averaging process 
% 
% 
% Author: Ville Järvinen 
%  
 
 
D = zeros(bb, length(data)); 
for a=1:bb 
    if a==1 
        v=[]; 
        D(a,:) = [data(:, a:end),v]; 
    else 
        v= ones( 1,a-1 ).* data( end-a+1 ); % OR; v= ones( 1,a-1 ).* 
data( end-1 : -1: end-a+1 ); 
        D(a,:) = [data(:, a:end),v]; 
    end 
end 
md = mean(D); 
shift = floor(bb/2); 
 
out = [md(1)*ones(1,shift) md(1:end-shift)]; 
 


